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Abstract

A liquid–air fountain flow due to the downward motion of a rectangular sleeve over a stationary piston is studied in the paper. Two-
dimensional incompressible laminar flows are assumed to prevail in both air and liquid regions. A single set of governing equations over
the entire physical domain including the liquid, the air, and the liquid–air interface (free surface) is solved with the extended weighting
function scheme and the NAPPLE (nonstaggered APPLE) algorithm on a fixed nonstaggered Cartesian grid system. To ensure the
required dynamic contact angle, the liquid meniscus near the sleeve wall is corrected by solving the force balance equation with the geom-
etry method. This is equivalent to introducing a slip condition at the contact line, and thus successfully removes the stress singularity.
Steady state solution of the velocity and the pressure as well as the shape of the free surface is obtained. The numerical result evidences
the existence of a toroidal-like motion on the free surface postulated by Dussan [E.B. Dussan V., Immiscible liquid displacement in a
capillary tube: the moving contact line, AIChE J. 23 (1977) 131–133], although it is quite weak and thin. The resulting free surface profile
agrees with the existing experimental observation excellently. Influence of the piston on the flow is discussed.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem dealing with displacement of one fluid by
another immiscible fluid is encountered in nature and many
industrial applications such as coating operation, oil recov-
ery, and mold filling process. It is well-known that a fluid
entering the region near the advancing interface of two
immiscible fluids in a narrow channel decelerates in the
flow direction and acquires a transverse velocity to spill
outward the wall. Such a flow characteristic was coined
with the term ‘‘fountain effect” by Rose [1].

Numerical simulation for the fountain flow is a challeng-
ing problem because of three principal numerical difficul-
ties. First, there is a stress singularity at the contact line
due to the no-slip condition on the wall for both fluids. Sec-
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doi:10.1016/j.ijheatmasstransfer.2007.08.030

* Corresponding author. Tel./fax: +886 3572 8230.
E-mail address: sllee@pme.nthu.edu.tw (S.-L. Lee).
ond, the free surface profile having an irregular shape is not
known. Third, the capillary force arising from the curva-
ture of the free surface and the dynamic contact angle
should be precisely evaluated. To remove the stress singu-
larity at the contact line, Dussan V. and co-worker [2,3]
and Cox [4] postulated that there should be a region of size
ls around the contact line in which the no-slip condition
breaks down. However, the molecular dynamic simulations
[5,6] demonstrate that the slipping length is of the order
ls � 0:001lm for smooth solid walls having smoothness
on the molecular scale. Similarly, the ‘‘effective” slipping
length should be on the order of the typical period of the
random undulations for rough walls [7,8]. Unfortunately,
it is not practical to implement such a tiny slipping length
in the numerical simulation for the flow field.

Behrens et al. [9] proposed a rolling model for the
advancement of the free surface. However, the rolling
model poses to an oscillating advancement for the contact
line. Moreover, there is a mass loss on the wall. Similar
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Nomenclature

aW ; aE; aS ; aN ; aP ; aR weighting factors of the finite differ-
ence Eq. (13a)

Bo Bond number, ðql � qaÞgL2c
Ca Capillary number, llUc=c
Fr Froude number, U c=

ffiffiffiffiffiffi
gL
p

hðx; sÞ free surface profile
L inner width of the rectangular sleeve, Fig. 1
P ref reference pressure, N m�2

p dimensionless pressure, ðP � P refÞ=qlU
2
c

p̂ dimensionless pressure, Eq. (4)
Re Reynolds number, qlUcL=ll

u, v dimensionless velocity, U=U c and V =Uc

Uc reference velocity
V wall moving speed of the sleeve, m s�1

vn dimensionless normal velocity on the free sur-
face

wf weighting function, z=ð1� expð�zÞÞ
ŵf extended weighting function, Eq. (17)
(x,y) coordinate system

xjoint a location near the wall, Fig. 4
yref reference altitude
z grid Peclet number, Eq. (13b)

Greek symbols

c surface tension, N m�1

Dx;Dy grid meshes
Ds virtual time step
hD dynamic contact angle
j curvature of the free surface
l� dimensionless viscosity, Eq. (6)
q� dimensionless density, Eq. (5)
rnn normal stress on free surface
s virtual time
w stream function, Eq. (40)

Subscripts

a air
l liquid
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result was obtained by Kim et al. [10] when the rolling
model and the VOF (volume-of-fluid) scheme were used
to track the moving free surface. For consideration of the
mass conservation on the wall, Mavridis et al. [11] modified
the rolling model by imposing the kinematic condition with
the no-slip hypothesis at the contact line. When applied to
a start-up free surface flow, however, the modified rolling
model [11] does not allow the contact line to move until
the contact angle increases from the static contact angle
to 180�. As a result, the dynamic contact angle is always
180� despite of the capillary number. This does not seem
physically realistic because the dynamic contact angle
should be a strong function of the capillary number as
well-recognized in the literature [12].

In an early experiment on the displacement of mineral
oil by glycerine in a Plexiglas circular tube of 6.35 mm
inner diameter, Dussan V. [13] observed that the glycerine
underwent the familiar fountain flow, while the mineral oil
contained a toroidal-like motion in a region adjacent to the
interface. Based on the finding, Dussan V. [13] postulated
the existence of a toroidal-like motion in the region directly
above and immediately adjacent to the interface of two
immiscible fluids.

The problem of injection mold filling is one of the
important applications of the fountain flow in liquid–air
system. The literature in the area (e.g. [14–19]) seems
restricted to problems without capillary force and body
force. Moreover, the inlet velocity is assumed to have a
fully developed parabolic profile. Such investigations clo-
sure the problem by imposing some ‘‘boundary conditions”

on the free surface, and thus cannot observe the flow field
in the air region. The purpose of the present work is to re-
examine the fountain flow in liquid–air system by solving
velocity and pressure in both liquid and air regions on a
fixed nonstaggered Cartesian grid system. The free surface
profile in the wall region is corrected with the required
dynamic contact angle to remove the stress singularity at
the contact line. In this connection, both capillary force
and body force should be taken into account especially in
the wall region.

2. Theoretical analysis

In their experiment, Coyle et al. [20] used a constant-
speed motor to lower a transparent acrylic sleeve over a
stationary aluminum piston that rested on the floor. A
Newtonian silicon oil was poured into the region above
the aluminum piston with the acrylic sleeve in the position
shown in Fig. 1. The inner cross-section of the sleeve was
2L� 2W ¼ 0:038 m� 0:114 m. The sleeve had a moving
speed of only V wall ¼ 0:002 m/s while its length was
1.016 m such that the steady-state flow was reached. Coyle
et al. [20] found that the flow was essentially two-dimen-
sional when viewed from the narrow side (see Fig. 1). In
the present study, this same flow configuration is formu-
lated by
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Fig. 1. Flow configuration of the problem.
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based on the following dimensionless transformation:

x ¼ X=L; y ¼ Y =L; u ¼ U=U c;

v ¼ V =U c; s ¼ ðU c=LÞt

Re ¼ qlUcL
ll

; Fr ¼ Ucffiffiffiffiffiffi
gL
p ;q� ¼ q=ql;l

� ¼ l=ll

p ¼ P � P ref

qlU
2
c

; p̂ ¼
Reðpþ Fr�2ðy � yrefÞÞ in liquid

Re pþ qa

ql
Fr�2ðy � yrefÞ

� �
in air

8<
:

ð4Þ

where U c ¼ V wall is the reference velocity. The reference
altitude yref is to be defined. Mathematically, the dimen-
sionless density q� and viscosity l� are step functions across
the free surface. They have the value of unity in the liquid
region and jump to another constant in the air region, i.e.

q� ¼
1 in liquid

qa=ql in air

�
ð5Þ

l� ¼
1 in liquid

la=ll in air

�
ð6Þ

where the subscripts ‘a’ and ‘l’ denote, respectively, the
properties of the air and the liquid. Under this particular
formulation, the ‘‘free surface” is regarded as an internal
boundary of the physical domain, and thus no additional
treatment is needed for the shear stress on the free surface.

The pressure jump across the free surface is expressible
as the force balance equation [21,22]

pl � pa ¼ �
1

Re
j

Ca
� ðrnnÞl þ

la

ll

� �
ðrnnÞa

� �
ð7aÞ

Ca ¼ lUc

c
; rnn ¼ 2

ovn

on
; j ¼ h00

ð1þ h02Þ1:5
ð7bÞ

where Ca is the capillary number, and c is the surface ten-
sion. The curvature j (normalized by L�1) is positive for
concave liquid meniscus, while y ¼ hðx; sÞ represents the
free surface. The primes in Eq. (7b) stand for the partial
differentiation with respect to x. Because both characteris-
tic velocity and characteristic length are small, the normal
stress rnn on the free surface is negligible as compared to
the capillary force and the body force in the present case.
For simplicity, the reference altitude is defined as yref ¼ 0.
Hence, Eq. (7a) reduces to

p̂l � p̂a ¼
1

Ca
ðBoh� jÞ ð8Þ

where the Bond number is defined as

Bo ¼ ðql � qaÞgL2

c
ð9Þ

In the present study, the mean depth of the liquid �h is
less than 4. Thus, it is adequate to employ the region
0 6 x 6 1 and 0 6 y 6 5 as the computational domain.
The associated boundary conditions are

uð0;y;sÞ ¼ 0; ovð0;y;sÞ=ox¼ 0; uð1;y;sÞ ¼ 0;

vð1;y;sÞ ¼�1

uðx;0;sÞ ¼ 0; vðx;0;sÞ ¼ 0; uðx;5;sÞ ¼ 0; ovðx;5;sÞ=oy ¼ 0

ð10Þ
On the imaginary plane y ¼ 5, the pressure is assumed to
be the ambient pressure P1 such that pðx; 5; sÞ ¼ 0 and

p̂aðx; 5; sÞ ¼ 5
qa

ql

Re

Fr2
¼ 5

qa

ql � qa

Bo
Ca

ð11Þ

if the reference pressure is assigned as P ref ¼ P1.

3. Numerical procedure

The governing equation (11), the force balance Eq. (8),
the associated boundary conditions (10), and the pressure
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level (11) constitute a problem of partial differential equa-
tions. In the present study, the numerical procedure is per-
formed on a uniform Cartesian grid system ðxi; yjÞ, i.e.

xi ¼ ði� 1ÞDx

yj ¼ ðj� 1ÞDy
ð12Þ

with square meshes Dx ¼ Dy. For convenience, let the grid
point ðxi; yjÞ be represented by P while its four neighbors
ðxi�1; yjÞ, ðxiþ1; yjÞ, ðxi; yj�1Þ, ðxi; yjþ1Þ be denoted by the
conventional notation W, E, S, N, respectively. In case
all of the five points are located in the same phase (liquid
or air), the conventional weighting function scheme [23]
is employed to discretize the momentum equation (2).
The resulting algebraic equation is expressible as

aW ui�1;j þ aEuiþ1;j þ aSui;j�1 þ aN ui;jþ1 þ aP ui;j ¼ aR þ
op̂
ox
ð13aÞ

aW ¼
l�wf ðzx;i�1Þ
ðDxÞ2

; aE ¼
l�wf ð�zx;iÞ
ðDxÞ2

aS ¼
l�wf ðzy;j�1Þ
ðDyÞ2

; aN ¼
l�wf ð�zy;jÞ
ðDyÞ2

aP ¼ �ðaW þ aE þ aS þ aN Þ �
Re q�

Ds
; aR ¼ �

Re q�

Ds

� �
u0

wf ðzÞ ¼
z

1� expð�zÞ ; zx;i ¼ Re �u
q�

l�

� �
Dx;

zy;j ¼ Re �v
q�

l�

� �
Dy ð13bÞ

where u0 denotes the velocity u at the previous time s� Ds,
and �u and �v are the average velocities in the intervals
½xi; xiþ1� and ½yj; yjþ1�, respectively. Eq. (3) can be treated
similarly.

As observable from Eq. (13), the pressure gradient
ðop̂=ox and op̂=oyÞ is proportional to the viscosity l� for
a low Reynolds number free surface flow such as the pres-
ent case (z � 0 and wf ðzÞ � 1). This implies a negligible
variation in the air pressure p̂aðx; h; sÞ as compared to the
other terms in the right-hand-side of Eq. (8) if la=ll 6 1
and qa=ql 6 1. Under such a situation, Eq. (8) reduces to

p̂l ¼
1

Ca
ðBoh� jÞ ð14Þ

To properly handle the step functions (5) and (6) when
the computational cell covers both liquid and air regions
including the free surface, the extended weighting function
scheme [21] is employed. Suppose the free surface interests
the segment ½xi; xiþ1� at x ¼ xs such that the point P ðxi; yjÞ
and three of its neighbors W, S, N are located in the liquid
region while the point Eðxiþ1; yjÞ is in the air region. Apply-
ing the integration scheme [24], one has

aE ¼ Dx
Z xiþ1

xi

1

l�
exp

Z x

xi

Re u
q�

l�
dx

� �
dx

� ��1

ð15Þ
Next, integrate Eq. (15) piece by piece over the two subin-
tervals ½xi; xs� and ½xs; xiþ1� to yield the extended weighting
function scheme [21]

aE ¼
ŵf �z1;�z2 1; qa

ql
; 1; la

ll

���� �
ðDxÞ2

ð16Þ

where

z1 ¼ Re�uDxs; z2 ¼ Re�uDx
qall

qlla

ð1� sÞ; s ¼ xs � xi

Dx

ŵf ða; bja1; a2; b1; b2Þ

¼ a2b1aþ a1b2b
a2ð1� expð�aÞÞ þ a1ð1� expð�bÞÞ expð�aÞ

ð17Þ

A general formulation of the extended weighting function
scheme for all possible situations can be found in ref.
[21]. It can be verified from Eq. (17) that the weighting fac-
tor (16) reduces to the counterpart in Eq. (13b) when the
interval ½xi; xiþ1� contains only a single phase fluid, i.e.

aE ¼
wf ð�zx;iÞ
ðDxÞ2

and zx;i ¼ z1 if s ¼ 1 ð18aÞ

aE ¼
la

ll

wf ð�zx;iÞ
ðDxÞ2

and zx;i ¼ z2 if s ¼ 0 ð18bÞ

For convenience, the present numerical procedure is sum-
marized as follows.

1. Assume that the free surface profile hðx; s0Þ and the
velocity field ðu0; v0Þ at the previous time level
s0 ¼ s� Ds are known.

2. Use the method of extrapolated velocity [21,22] to
determine the migration velocity of the free surface
at the time level s0.

3. Estimate the free surface hðx; sÞ for the present time
level s from the migration velocity of the free surface
at the previous time level s0.

4. Evaluate the curvature j of the free surface hðx; sÞ.
5. Estimate the pressure p̂lðx; h; sÞ on the liquid side of

the free surface from Eq. (14).
6. Based on the pressure p̂lðx; h; sÞ obtained in Step 5,

correct the free surface profile hðx; sÞ with the
required dynamic contact angle hD.

7. Replace the air velocity ðu0; v0Þ with the extrapolated
velocity in the narrow layer where the advancing free
surface sweeps through during the period from s0 to
s.

8. Guess a solution ðu; v; p̂Þ for the present time level s.
9. Solve the momentum Eq. (2) and (3) to renew the

velocity (u,v), and then evaluate the migration veloc-
ity on the free surface hðx; sÞ with the method of
extrapolated velocity [21,22].

10. Use the NAPPLE algorithm [25] to compute the pres-
sure field p̂lðx; y; sÞ for the liquid based on the free
surface pressure p̂lðx; h; sÞ, and compute the pressure
field p̂aðx; y; sÞ for the air based on the migration
velocity of the free surface.
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11. Return to Step 9 and repeat the computations until
the solution ðu; v; p̂Þ converges to a prescribed
tolerance.

12. Stop the numerical procedure if the prescribed time
limit has been reached. Otherwise, set s0 ¼ s and
ðu0; v0; h0Þ ¼ ðu; v; hÞ then return to Step 3 and repeat
the computations for the next time step.

It is noteworthy that the capillary force could have a
quite significant effect in the wall region when the surface
tension c is large and the contact angle is close to either
0� or 180�. Moreover, the free surface profile hðx; sÞ esti-
mated in Step 3 does not necessarily satisfy the required
dynamic contact angle hD on the wall. Hence, the force bal-
ance Eq. (14) is solved with the geometry method [26] in
Step 6 to correct the free surface profile hðx; sÞ in the wall
region xjoint 6 x 6 1. As illustrated in Fig. 2, the curvature
at the joint jðxjoint; sÞ is guessed and adjusted with a shoot-
ing method to achieve the required dynamic contact angle
hDðsÞ, while hðxjoint; sÞ, h0ðxjoint; sÞ and the pressure distribu-
tion p̂lðx; h; sÞ are all maintained at their original values.
Such a strategy is equivalent to introducing a slip boundary
condition for the contact line, and thus successfully
removes the stress singularity arising from the no-slip con-
dition imposed on the wall (x = 1) for both liquid and air
regions. However, correction of the free surface profile
might influence the mass conservation in the wall region
(see Fig. 2). This will be discussed later.
Fig. 2. A schematic representation of free surface correction in the wall
region.
4. Evaluation of the curvature

In Step 3 of the numerical procedure described in the
previous section, the free surface hðx; sÞ for the present time
level s is estimated from the previous profile hðx; s0Þ by
tracking the markers on it. The spacing between two adja-
cent markers is Dx=10 approximately. The resulting free
surface having the discrete form hi ¼ hðxi; sÞ is interpolated
from the markers. However, it is a great difficulty to eval-
uate the curvature with Eq. (7b) for the discrete function
hðxi; sÞ due to numerical noise. To circumvent the numeri-
cal difficulty, the smoothing cubic spline [27] is employed in
Step 4. Note that the algorithm described by Lancaster and
Salkauskas [27] can be significantly simplified to save the
CPU time if performed on a uniform grid system. For con-
venience, such a simplified version is presented as
following.

Let ðxi; yiÞ, i ¼ 1; 2 . . . ; n, be a discrete form of function
yðxÞ, where xi ¼ ði� 1ÞDx is a uniform grid system. In the
conventional free cubic spline formulation [28], the func-
tion y(x) in the interval ½xi; xiþ1� is approximated by a cubic
polynomial of the form

sðxÞ ¼ ai þ biðx� xiÞ þ ciðx� xiÞ2 þ diðx� xiÞ3 ð19Þ
where s(x) represents a piecewise continuous function over
the whole domain x1 6 x 6 xn. The second derivatives of
the spline function s(x) at the grid points then are deter-
mined from

Bs00 ¼ Dŷ ð20Þ
where s00 ¼ fs001; s002; . . . ; s00ng

T, ŷ ¼ fŷ1; ŷ2; . . . ; ŷngT, s00i ¼
s00ðxiÞ ¼ 2ci, ŷi ¼ byi, b ¼ 6

ðDxÞ2, and

B ¼

1 0 0 0 0 0 0

0 4 1 0 0 0 0

0 1 4 1 0 0 0

0 0 1 4 1 0 0

0 0 0 1 4 1 0

0 0 0 0 1 4 0

0 0 0 0 0 0 1

2
666666666664

3
777777777775

D ¼

0 0 0 0 0 0 0

1 �2 1 0 0 0 0

0 1 �2 1 0 0 0

0 0 1 �2 1 0 0

0 0 0 1 �2 1 0

0 0 0 0 1 �2 1

0 0 0 0 0 0 0

2
666666666664

3
777777777775

ð21Þ

Unfortunately, the interpolation function generated by the
method of free cubic spline could oscillate wildly if there is
a large noise in the original data yi. This implies the need of
filtering the noise. Suppose that the original data yi be-
comes si, i ¼ 1; 2; . . . ; n after the noise is filtered. Applying
the numerical procedure of a standard free cubic spline on
si, one gets
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Bs00 ¼ Dŝ ð22Þ

where ŝ ¼ fŝ1; ŝ2; . . . ; ŝngT and ŝi ¼ bsi. This gives rise to

s00ðxÞ ¼ 2ci þ 6diðx� xiÞ ¼ s00i LiðxÞ ð23Þ

in the interval ½xi; xiþ1�, where s0i ¼ 2ci and

LiðxÞ ¼
1þ s00iþ1

s00i
� 1

� �
x�xi
Dx

	 

if xi 6 x < xiþ1

0 otherwise

(
ð24Þ

is the Lagrange linear interpolation polynomial. Thus, the
second derivative of the smoothing cubic spline is express-
ible as the vector form

s00ðxÞ ¼
Xn

i¼1

s00i Li ¼ ðs00ÞTL ¼ LTs00 ð25Þ

where L ¼ fL1; L2; . . . ; LngT is a vector containing the tent
functions that are needed to form the piecewise continuous
linear function s00ðxÞ for a free cubic spline. Next, define the
functional

KkðsÞ ¼ EðsÞ þ kDxJðsÞ ð26Þ

EðsÞ ¼
Xn

i¼1

ðsi � yiÞ
2 and JðsÞ ¼

Z xn

x1

ðs00ðxÞÞ2 dx ð27Þ

where k is a prescribed nonnegative constant ðk P 0Þ. In
vector form

EðsÞ ¼
Xn

i¼1

ðsi � yiÞ
2 ¼ ðs� yÞTðs� yÞ ð28Þ

JðsÞ ¼
Z xn

x1

ðs00ðxÞÞ2 dx ¼
Z xn

x1

ðs0ÞTLLTs00 dx

¼ ðs00ÞT
Z xn

x1

LLT dx
� �

s00 ¼ 1

bDx
ðs0ÞTBs00 ð29Þ

Substituting the second derivative (22)

s00 ¼ B�1Dŝ or ðs00ÞT ¼ ðŝÞTDTðB�1ÞT ð30Þ

into Eq. (29) and noting that B is a symmetric matrix, one
has

JðsÞ ¼ 1

bDx
ð̂sÞTDTB�1BB�1Dŝ ¼ 1

Dx
sTDTB�1Dŝ ð31Þ

Thus, the functional can be rewritten as

KkðsÞ ¼ ðs� yÞTðs� yÞ þ ksTDTB�1Dŝ ð32Þ

The next step is to find the vector s ¼ fs1; s2; . . . ; sngT such
that the functional reaches a minimum. This can be imple-
mented by differentiating the functional with respect to si to
yield the necessary condition

ðs� yÞ þ kDTB�1Dŝ ¼ 0 ð33Þ

Multiplying Eq. (33) on the left by bD and then replace Dŝ
by Bs00, one gets

ðB þ kbGÞs00 ¼ Dŷ ð34Þ
where

G ¼ DDT ¼

0 0 0 0 0 0 0

0 6 �4 1 0 0 0

0 �4 6 �4 1 0 0

0 1 �4 6 �4 1 0

0 0 1 �4 6 �4 0

0 0 0 1 �4 6 0

0 0 0 0 0 0 0

2
666666666664

3
777777777775

ð35Þ

Finally, substitute Eq. (30) into Eq. (33) to yield

s ¼ y� kDTs00 ð36Þ
This produces a smoothing spline ðxi; siÞ over the original
data ðxi; yiÞ, once the vector s00 is determined from Eq. (34).

It is interesting to note that when k ¼ 0 is assigned, the
principle of minimum functional (27) leads to si ¼ yi and
KkðsÞ ¼ 0, and thus sðxÞ reduces to the conventional free
cubic spline as observable from Eqs. (34) and (36). On
the other hand, if k is large, the minimization of KkðsÞ
should be close to a least squares straight-line approxima-
tion to the data. A straight line has zero second derivative
and hence zero JðsÞ. Therefore, sðxÞ shifts continuously
from the conventional free cubic spline to a least squares
straight-line approximation when k gradually increases
from zero to infinity. Generally speaking, large k implies
a less sinuous curve, while small k means a less deviation
from the original data. The optimum value for k, however,
is strongly problem-dependent. One should experiment
with the value of k until a satisfactory fit is obtained.

5. Results and discussion

As in the experiment of Coyle et al. [20], silicon oil and
air are adopted as the media of the fountain flow in the
present study. The physical properties at 25 �C are

ql ¼ 970 kg=m3
; ll ¼ 52:5 N s=m2

qa ¼ 1:205 kg=m3
; la ¼ 1:81� 10�5 N s=m2

c ¼ 0:021 N=m

ð37Þ

The corresponding dimensionless parameters are

qa=ql ¼ 0:001242; la=ll ¼ 3:448� 10�7

Re ¼ 7:02� 10�4; Ca ¼ 5; Bo ¼ 163:3
ð38Þ

based on the gravity g = 9.806 m/s2 and the characteristic
quantities L ¼ 0:019 m and U c ¼ 0:002 m=s. The numerical
procedure starts from a made-up initial condition and then
marches on a virtual time coordinate until the steady-state
solution is reached. When the steady-state flow is reached,
the contact line gains an upward ‘‘slipping velocity” that
equals to V wall. The corresponding capillary number
Ca ¼ 5 implies a dynamic contact angle of hD ¼ 176:7�

based on Hoffman–Kistler’s model [29].
Three liquid volumes are employed to examine the influ-

ence of the piston. Their corresponding mean liquid depths



Fig. 4. Influence of xjoint on the free surface for Case 2.
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are 0.87, 1.95, and 3.95. For convenience, the three cases
are referred to as Case 1, Case 2, and Case 3, respectively.
After a series of grid tests, the uniform square grid mesh
Dx ¼ Dy ¼ 0:02 with Ds ¼ 0:001 is found adequate for all
of the three cases. The successive-over-relaxation factors
(SOR) employed for the computation are 0.6 and 0.03
for the velocity and the pressure, respectively. The compu-
tation for each time step is terminated when both criterions

Max
k

/ðrÞk � /ðr�1Þ
k

��� ��� < 10�5 ð39aÞ

Max
k

p̂ðrÞk � p̂ðr�1Þ
k

p̂max � p̂min

�����
����� < 10�4 ð39bÞ

are satisfied, where / denotes the velocity components (u
and v), and /ðrÞk is the result of the kth grid point at the
rth iteration.

Fig. 3 shows the influence of k on the resulting free sur-
face curvature obtained by using the smoothing cubic
spline method for Case 2. The curvature obtained from
Eq. (7b) with the central difference scheme is also plotted
in Fig. 3 as a reference (see the dotted curve). Based on
the finding from Fig. 3, k ¼ 0:01 is adopted to evaluate
the curvature of the free surface. Once the curvature is
known, the free surface profile in the wall region
ðxjoint 6 x 6 1Þ is corrected with the geometry method [26]
to achieve the desired dynamic contact angle
ðhD ¼ 176:7�Þ on the contact line. Influence of xjoint is exam-
ined in Fig. 4 through three xjoint values for Case 2. From
Fig. 4, the value of xjoint is seen to have only a negligible
influence on the free surface profile hðx;1Þ. Hence, the free
surface profile is corrected only in the region 0:9 6 x 6 1
for simplicity. At very beginning of the numerical proce-
dure ðs � 0Þ, correction of the free surface profile is quite
Fig. 3. Influence of k on the curvature in smoothing cubic spline.
significant due to the fact that the ‘‘initial” free surface pro-
file hðx; 0Þ has an ‘‘incorrect” contact angle hD ¼ 90�. This
implies the need of correcting the overall mass conserva-
tion. Fortunately, the correction becomes negligibly small
when the virtual time s is sufficiently large.

In the present study, the primary variables ðu; v; p̂Þ are
solved directly from the governing equations. For a clear
observation on the flow pattern, the stream function is
evaluated from

w ¼ �
Z x

0

vdx ð40Þ

once the velocity is available. The integration (40) can be
performed across the free surface because the continuity
Eq. (1) is valid in both liquid and air regions despite of
the great density difference. Fig. 5 reveals the streamlines
w ¼ constant and the isobars p̂ ¼ constant for the steady-
state solution of Case 1. The increments are 0.02 and 1
for the streamlines and the isobars, respectively. The
bold-face curve represents the free surface. It is important
to note that the stream function is negative in both liquid
and air regions, while the maximum 0.003 occurs in a nar-
row ‘‘positive region” adjacent to the free surface. This evi-
dences that the toroidal-like motion postulated by Dussan
V. [13] exists even in the liquid–air system.

It can be verified from the momentum equation (2) and
(3) that the pressure p̂ is constant in static fluids
ðu ¼ v ¼ 0Þ. Thus, the variation of p̂ in Fig. 5 is induced
by the fluid flow. Due to the small density and viscosity,
the flow-induced pressure p̂a in the air is essentially zero
(less than 0.5) as observable from Fig. 5. Use of the bound-
ary condition ovðx; 5; sÞ=oy ¼ 0 in Eq. (10) is only for
numerical convenience. The numerical result for the liquid



Fig. 5. Streamlines with increment Dw ¼ 0:02 and isobars with increment
Dp̂ ¼ 1 for Case 1.

Fig. 6. Streamlines with increment Dw ¼ 0:02 and isobars with increment
Dp̂ ¼ 1 for Case 2.
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region and the free surface would not be significantly influ-
enced if the boundary condition vðx; 5Þ ¼ 0 is used instead.

The flow pattern and the pressure field in the liquid
region of Fig. 5 is similar to that of the classic lid-driven
flow on a square cavity [25]. Along the free surface, the
pressure p̂l is seen to decrease from 28.3 in the centerline
to 19.2 on the sleeve wall, while the air pressure essentially
maintains at p̂a � 0:5. The pressure gradient offers a driven
force for the liquid to move along the free surface from the
centerline to the wall. It could be a good measure for the
strength of the fountain flow. The minimum pressure
occurring at the contact line can be attributed to the ‘‘slip-
ping free surface” on the sleeve wall. Such a ‘‘suction force”

comes mainly from the body force Boh because a large
Bond number ðBo ¼ 163:3Þ occurs in the present case (see
Eq. (14)). This evidences the importance of the capillary
force (surface tension plus contact angle) that determines
the free surface profile hðx; sÞ in the wall region. Similar sit-
uations are found in Figs. 6 and 7 for Case 2 and Case 3,
respectively. In their study on a fountain flow problem
for viscoelastic fluids, Sato and Richardson [30] neglected
the capillary force, and thus did not observe the ‘‘suction
force” at the contact line.

The isobars shown in Fig. 7 clearly distinguish three
regions of flow, i.e. a fountain flow just behind the free sur-
face, a plane shear flow behind the fountain flow
ð1 < y < 3Þ, and a recirculation flow near the piston. The
pressure gradient is essentially constant in the plane shear
flow region. This same feature occurs also in the fountain
flow problem for viscoelastic fluids [30]. From Figs. 5–7,
it is seen that the plane shear flow region shrinks when
the liquid volume decreases. It could even entirely disap-
pear when the liquid volume is small (see Fig. 5 for
instance).



Fig. 7. Streamlines with increment Dw ¼ 0:02 and isobars with increment
Dp̂ ¼ 1 for Case 3.

Fig. 8. Comparisons of streamlines and free surface among Case 1, 2,
and 3.

Fig. 9. Comparison of free surface between present prediction and
experiment.
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Fig. 8 shows comparisons among Case 1, Case 2, and
Case 3 for the effect of the liquid volume on the streamlines
in the fountain flow region. The effect of the liquid volume
on the free surface profile is negligible such that the free
surface profiles of the three cases can be represented by a
single bold-face curve. Fig. 8b reveals that the streamlines
are not influenced by the liquid volume as long as the liquid
volume is sufficiently large. Surprisingly, however, the great
difference between the streamlines of Case 1 and Case 2 in
Fig. 8a has no effect on the free surface profile. To examine
the accuracy of the present numerical results, the free sur-
face profile obtained in Case 2 is compared with an exper-
imental observation traced from the photograph of Coyle
et al. [20] under the same conditions. Excellent agreement
between the present prediction and the experimental data
can be observed from Fig. 9.

Finally, the velocity profile v(x,y) is examined in Figs.
10–12 for Case 1, Case 2, and Case 3, respectively.
Fig. 10a depicts that the velocity is zero on the top of the
aluminum piston y = 0. Due to the no-slip condition on
the sleeve wall, the velocity in the wall region becomes neg-
ative at y > 0. This induces an accelerating flow in the core
region for the law of mass conservation. The maximum
velocity occurs at a point near ðx; yÞ ¼ ð0:6; 0:5Þ. As obser-
vable from Fig. 10, the velocity at the centerline increases
from zero at y = 0 to 0.081 at y = 0.5, and then decreases
to zero on the free surface at y = 0.9 (Note that the velocity
profile at y = 0.9 is not shown here because it is entirely in
the air region except for the point x = 0.). This is the char-
acteristic of a fountain flow. Similar phenomenon can be



Fig. 10. Velocity profile vðx; y;1Þ for Case 1.

Fig. 11. Velocity profile vðx; y;1Þ for Case 2.

Fig. 12. Velocity profile vðx; y;1Þ for Case 3.
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found in Figs. 11 and 12 for the cases of larger liquid vol-
ume. The major difference between Case 1 and Case 3 is
that there is a parabolic velocity profile in Case 3 before
the fountain flow region is reached.
In the liquid–gas system, the great density and viscosity
jumps across the free surface give rise to a great pressure
jump (8). Instead of imposing the pressure jump on the free
surface, the front-tracking method [31–33] formulates the
surface tension with a source term of integral form in the
momentum equation. In the numerical implementation,
however, the free surface is smeared into a finite thickness
such that both density and viscosity ‘‘gradients” exist
across the free surface. The quantities on the free surface
are transferred to the nearest grid points. Such a treatment
could generate anisotropic surface tension force and thus
wiggling pressure and unphysical velocity (parasitic cur-
rent) on the free surface, especially when the surface ten-
sion force is large [32,33]. As remarked by Tryggvason
et al. [32], small error can lead to negative densities that
usually cause convergence difficulties when the density
ratio is large. This implies that the continuity Eq. (1) across
the free surface is not precisely satisfied in the front-track-
ing method [31–33]. Similar numerical difficulties occur in
the use of the level set method [34]. In the present
study, the density and viscosity jumps are properly handled
with the integration scheme (see Eq. (15)), while the pres-
sure jump (8) is imposed exactly on the free surface through
the use of the NAPPLE algorithm. Hence, the numerical
difficulties encountered in the previous works [32–34] do
not occur in the present study. Moreover, the advancement
of the free surface is usually restricted to less than one grid
mesh in the front-tracking method [32]. Use of the present
numerical method has no such a limitation.

As a final note it is mentioned that a smooth-looking
curve could have a wildly oscillating curvature profile
(see Figs. 4 and 3 for instance) if the curvature is evaluated
from Eq. (7b) without a proper treatment. Computing the
curvature of a three-dimensional curvilinear surface is even
more difficult. This is the major numerical difficulty in fluid
flow problems dealing with a very strong capillary force
(surface tension force). The ghost fluid method [35,36]
and the hybrid particle level set method [37] were reported
to capture the free surface with only little numerical diffu-
sion. However, the capillary force that prevails in the wall
region is not investigated in the works [35–37]. In the pres-
ent study, the geometry method [26] along with the
smoothing cubic spline [27] is adopted to handle the capil-
lary force with a great success. Unfortunately, the pro-
posed method is valid only for two-dimensional and
axisymmetric problems. Their counterparts in the three-
dimensional problems are needed.

6. Conclusion

A fountain flow in a liquid–air system is studied in the
paper. A single set of governing equations over the entire
physical domain including the liquid, the air, and the free
surface is solved with the extended weighting function
scheme and the NAPPLE algorithm on a fixed Cartesian
grid system. The result reveals that there is a toroidal-like
motion on the free surface even in liquid–air system. This
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is consistent with the theory of the viscous flow. The piston
is found to have no influence on the free surface profile as
long as the distance between the free surface and the piston
is larger than the width of the fountain flow. The capillary
force (surface tension plus contact angle) has a dominate
effect on the shape of the liquid meniscus in the wall region.
To ensure the required dynamic contact angle, the free sur-
face profile in the wall region is corrected by solving the
nonlinear force balance equation with the geometry
method. This is equivalent to introducing a slip condition
at the contact line, and thus successfully circumvents the
stress singularity. The strategy is equally applicable for
three-dimensional problems in case a particular numerical
method is available that solves the force balance equation
to yield a three-dimensional meniscus shape adjacent to
the contact line.
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